$\zeta(3)$ results

The following results are Polynomial Continued Fractions of $\zeta(3)$. For the results marked as "new and unproven", we have not found any formal proof yet.

Novelty	Formula	Polynomials	Convergence $\left[\frac{digits}{term}\right]$
known	$\frac{1}{\zeta(3)} = 0^3 + 1^3 - \frac{1^6}{1^3 + 2^3 - \frac{2^2}{2^3 + 3^3 - \frac{3^6}{3^3 + 4^3 - \dots}}}$	$a_n = n^3 + (n+1)^3, \ b_n = -n^6$	polynomial
known	$\frac{5}{2\zeta(3)} = 2 + \frac{2 \cdot 1^5 \cdot 1}{2 + 1 \cdot 3 \cdot 7 + \frac{2 \cdot 2^5 \cdot 3}{2 + 1 \cdot 4 \cdot 10 + \frac{2 \cdot 2^5 \cdot 5}{2 + 1 \cdot 5 \cdot 13 + \dots}}}$	$a_n = 2 + n(2+n)(4+3n), \ b_n = 4n^6 - 2n^5$	0.60342
known	$\frac{6}{\zeta(3)} = 5 - \frac{1}{117 - \frac{64}{535 - \frac{729}{1463 - \frac{4095}{14}}}}$	$a_n = (2n+1)(17n(n+1)+5), \ b_n = -n^6$	3.0316
new and unproven	$\frac{\frac{8}{7\zeta(3)} = 1 \cdot 1 - \frac{1^{6}}{3 \cdot 7 - \frac{2^{6}}{5 \cdot 19 - \frac{3^{6}}{7 \cdot 37 - \frac{4^{6}}{7}}}}$	$a_n = (2n+1)(3n(n+1)+1), \ b_n = -n^6$	1.5158
new and unproven	$\frac{12}{7\zeta(3)} = 1 \cdot 2 - \frac{16 \cdot 1^6}{3 \cdot 12 - \frac{16 \cdot 3^6}{5 \cdot 32 - \frac{16 \cdot 3^6}{7 \cdot 62 - \frac{16 \cdot 3^6}{7 \cdot 62 - \frac{16 \cdot 4^6}{7}}}}$	$a_n = (2n+1)(5n(n+1)+2), \ b_n = -16n^6$	0.59602